ÇÑ±Û | ¿µ¾î |
°¡¼³ | hypothesis |
°¡ÁöÄ¡±â | branching |
°³Ã¼º¯¼ö | individual variable |
°ÇÀü¼º | soundness |
°á·Ð | conclusion |
°áÇÕÀÚ | connective |
°öÀÎÀÚ | conjunct |
°ø¿ª | codomain |
±¸¹®, ±¸¹®·Ð | syntax, syntactics |
(1°è)±¸Á¶Ã¼ | (1st-order) structure |
±Í³³ | induction |
±Í·ù¹ý | reduction to absurdity, RAA |
±ØÇÑ´Ü°è ¼¼ö | limit ordinal |
³í¸®°ö | conjunction |
³í¸®°ö¹® | conjunction (formula) |
³í¸®½Ä | formula |
³í¸®¿ÜÀû ±âÈ£ | extralogical symbol |
³í¸®Àû ±Í°á°ü°è | logical consequence relation |
³í¸®Àû ±âÈ£ | logical symbol |
³í¸®ÇÕ | disjunction |
³í¸®ÇÕ¹® | disjunction (formula) |
´ÙÀ½´Ü°è ¼¼ö | successor ordinal |
´ÙÀ½¼ö ÇÔ¼ö | successor function |
´ë»ó¿µ¿ª | domain, universe (of discourse) |
´ë¿ì | contrapositive |
´ëü | replacement |
´ëĪÀûÀÎ | symmetric |
µ¥¸®º£ÀÌ¼Ç | derivation |
µ¿µî°ü°è | equivalence (relation) |
µ¿µîÇÑ | equivalent |
µîÈ£ | equality |
¶§¸éÀÌ | when and only when |
¸®ÅÍ·² | literal |
¸¸Á·½ÃŰ´Ù | satisfy |
¸¸Á·°¡´ÉÇÑ | satisfiable |
¸¸Á·ºÒ°¡´ÉÇÑ | unsatisfiable |
¸èµîÀûÀÎ | idempotent |
¸èÁýÇÕ | power set |
¸íÁ¦ | proposition, statement |
¸íÁ¦¹®ÀÚ | propositional letter |
¸ðµ¨ | model |
¸ð¼ø | contradiction |
¸ð¼øÀûÀÎ | inconsistent |
¹«¸ð¼øÀûÀÎ | consistent |
¹Àκ¯¼ö | bound variable |
¹®ÀÚ¿ | string |
¹Ý´ëĪÀûÀÎ | antisymmetric |
¹Ý»çÀûÀÎ | reflexive |
¹èÁß·ü | law of excluded middle, LEM |
º¯¼ö¹èÁ¤ | variable assignment |
º¯¿ª | range |
º¸Á¶±âÈ£ | auxiliary symbol |
ºÎ¸ð | parent |
ºÎºÐ³í¸®½Ä | subformula |
ºÎºÐÁõ¸í | subproof |
ºÎºÐÁýÇÕ | subset |
ºÎÁ¤ | negation |
ºÎÁ¤¹® | negation (formula) |
ºñ´ëĪÀûÀÎ | asymmetric |
»ó¼ö±âÈ£ | constant symbol |
»ý¼º´Ü°è | formation level |
¼Ó¼º | attribute |
¼ú¾î | predicate |
¼ú¾î±âÈ£ | predicate symbol |
½×¾Æ³õ±â | piling |
¾Æ±Ô¸ÕÆ® | argument |
¾ÆÅè³í¸®½Ä | atomic formula |
¾ËÆÄºª | alphabet |
¾Ö¸®Æ¼ | arity |
¾ç¹æÇâÇÔÀÇ | biimplication, biconditional |
¾çÈ»ç | quantifier |
¾ð¾î | language |
¿ª | converse |
¿¬°á»ç | connective |
¿¬»ê | operation |
¿¬¿ªÁ¤¸® | deduction theorem |
¿ÏÀü¼º | completeness |
¿ì¼±¼øÀ§ | priority |
¿ø¼Ò | element |
ÀǹÌ, Àǹ̷Р| semantics |
Àǹ̰ª | semantic value |
À̸éÀÌ | if and only if |
ÀÔÁõÇÏ´Ù | validate |
ÀÚÀ¯º¯¼ö | free variable |
Àç±Í | recursion |
Àç±ÍÀûÀÎ | recursive |
Àü°Ç | antecedent |
ÀüÁ¦ | premise |
ÀüĪÇÑÁ¤±âÈ£ | universal quantifier |
Àüι® | universal formula |
Á¤±ÔÇü½Ä | normal form |
Á¤ÀÇ¿ª | domain |
Á¸ÀçÇÑÁ¤±âÈ£ | existential quantifier |
Á¸Àç¹® | existential formula |
ÁÖ¼® | annotation |
Áõ¸í | proof |
Áõ¸í°ü°è | proof relation |
Áõ¸í½Ã½ºÅÛ | proof system |
Áø¸®°ª | truth value |
Áø¸®°ª¹èÁ¤ | truth value assignment |
Áø¸®°ª ÇÔ¼ö | truth function |
Áø¸®Ç¥ | truth table |
Âü | truth |
Ãß·Ð | inference |
Ã߷бÔÄ¢ | rule of inference |
ÃßÀÌÀûÀÎ | transtive |
ġȯ | substitution |
Ÿ´ç¼º | validity |
ÅäÅç·ÎÁö | tautology |
ÅͶ߸®±â | pop |
ÇÑÁ¤±âÈ£ | quantifier |
ÇÑÁ¤»ç | determiner |
ÇÔ¼ö | function |
ÇÔ¼ö±âÈ£ | function symbol |
ÇÔÀÇ | implication, entailment |
ÇÔÀǹ® | implication (formula) |
ÇÕÀÎÀÚ | disjunct |
ÇÕ¼º³í¸®½Ä | compound formula |
Ç×Áø | logically valid formula |
Ç㹫Á¶°Ç¿¡ ÀÇÇÏ¿© ¼º¸³ | vacuously hold |
ÇØ¼® | interpretation |
Çü½ÄÁõ¸í | formal proof |
ÇüÁ¦ | sibling |
ÈÄ°Ç | consequent |
|
¿µ¾î | ÇÑ±Û |
alphabet | ¾ËÆÄºª, ±âÈ£ÁýÇÕ |
annotation | ÁÖ¼® |
antecedent | Àü°Ç |
antisymmetric | ¹Ý´ëĪÀûÀÎ |
argument | ¾Æ±Ô¸ÕÆ®, Àμö |
arity | ¾Ö¸®Æ¼ |
asymmetric | ºñ´ëĪÀûÀÎ |
attribute | ¼Ó¼º |
atomic formula | ¾ÆÅè³í¸®½Ä |
auxiliary symbol | º¸Á¶±âÈ£ |
biconditional | ¾ç¹æÇâÇÔÀÇ |
biimplication | ¾ç¹æÇâÇÔÀÇ |
bound variable | ¹Àκ¯¼ö |
branching | °¡ÁöÄ¡±â |
codomain | °ø¿ª |
completeness | ¿ÏÀü¼º |
compound formula | ÇÕ¼º³í¸®½Ä |
conclusion | °á·Ð |
conjunct | °öÀÎÀÚ |
conjunction | ³í¸®°ö, ³í¸®°ö¹® |
connective | °áÇÕÀÚ, ¿¬°á»ç |
consequent | ÈÄ°Ç |
consistent | ¹«¸ð¼øÀûÀÎ |
constant symbol | »ó¼ö±âÈ£ |
contradiction | ¸ð¼ø |
contrapositive | ´ë¿ì |
converse | ¿ª |
deduction theorem | ¿¬¿ªÁ¤¸® |
derivation | µ¥¸®º£ÀÌ¼Ç |
determiner | ÇÑÁ¤»ç |
disjunct | ÇÕÀÎÀÚ |
disjunction | ³í¸®ÇÕ, ³í¸®ÇÕ¹® |
domain | Á¤ÀÇ¿ª, ´ë»ó¿µ¿ª |
element | ¿ø¼Ò |
entailment | ÇÔÀÇ |
equality | µîÈ£ |
equivalence (relation) | µ¿µî°ü°è |
equivalent | µ¿µîÇÑ |
existential formula | Á¸Àç¹® |
existential quantifier | Á¸ÀçÇÑÁ¤±âÈ£ |
extralogical symbol | ³í¸®¿ÜÀû ±âÈ£ |
formal proof | Çü½ÄÁõ¸í |
formation level | »ý¼º´Ü°è |
formula | ³í¸®½Ä |
free variable | ÀÚÀ¯º¯¼ö |
function | ÇÔ¼ö |
function symbol | ÇÔ¼ö±âÈ£ |
idempotent | ¸èµîÀûÀÎ |
if and only if | À̸éÀÌ |
implication | ÇÔÀÇ, ÇÔÀǹ® |
inconsistent | ¸ð¼øÀûÀÎ |
individual variable | °³Ã¼º¯¼ö |
induction | ±Í³³ |
inference | Ãß·Ð |
interpretation | ÇØ¼® |
hypothesis | °¡¼³ |
language | ¾ð¾î |
law of excluded middle | ¹èÁß·ü |
LEM | ¹èÁß·ü |
limit ordinal | ±ØÇÑ´Ü°è ¼¼ö |
literal | ¸®ÅÍ·² |
logical consequence relation | ³í¸®Àû ±Í°á°ü°è |
logical symbol | ³í¸®Àû ±âÈ£ |
logically valid formula | Ç×Áø |
model | ¸ðµ¨ |
negation | ºÎÁ¤, ºÎÁ¤¹® |
normal form | Á¤±ÔÇü½Ä |
operation | ¿¬»ê |
parent | ºÎ¸ð |
piling | ½×¾Æ³õ±â |
power set | ¸èÁýÇÕ |
predicate | ¼ú¾î |
predicate symbol | ¼ú¾î±âÈ£ |
premise | ÀüÁ¦ |
priority | ¿ì¼±¼øÀ§ |
proof | Áõ¸í |
proof relation | Áõ¸í°ü°è |
proof system | Áõ¸í½Ã½ºÅÛ |
proposition | ¸íÁ¦ |
propositional letter | ¸íÁ¦¹®ÀÚ |
pop | ÅͶ߸®±â |
quantifier | ¾çÈ»ç, ÇÑÁ¤±âÈ£ |
RAA (reductio ad absurdum) | ±Í·ù¹ý |
range | º¯¿ª |
recursion | Àç±Í |
recursive | Àç±ÍÀûÀÎ |
reduction to absurdity | ±Í·ù¹ý |
reflexive | ¹Ý»çÀûÀÎ |
replacement | ´ëü |
rule of inference | Ã߷бÔÄ¢ |
satisfy | ¸¸Á·½ÃŰ´Ù |
satisfiable | ¸¸Á·°¡´ÉÇÑ |
semantics | ÀǹÌ, Àǹ̷Р|
semantic value | Àǹ̰ª |
sibling | ÇüÁ¦ |
soundness | °ÇÀü¼º |
statement | ¸íÁ¦ |
string | ¹®ÀÚ¿ |
(1st-order) structure | (1°è)±¸Á¶Ã¼ |
successor function | ´ÙÀ½¼ö ÇÔ¼ö |
successor ordinal | ´ÙÀ½´Ü°è ¼¼ö |
tautology | ÅäÅç·ÎÁö |
transtive | ÃßÀÌÀûÀÎ |
truth | Âü |
truth function | Áø¸®°ª ÇÔ¼ö |
truth table | Áø¸®Ç¥ |
truth value | Áø¸®°ª |
truth value assignment | Áø¸®°ª¹èÁ¤ |
subformula | ºÎºÐ³í¸®½Ä |
subproof | ºÎºÐÁõ¸í |
subset | ºÎºÐÁýÇÕ |
substitution | ġȯ |
symmetric | ´ëĪÀûÀÎ |
syntax, syntactics | ±¸¹®, ±¸¹®·Ð |
universal formula | Àüι® |
universal quantifier | ÀüĪÇÑÁ¤±âÈ£ |
universe (of discourse) | ´ë»ó¿µ¿ª |
unsatisfiable | ¸¸Á·ºÒ°¡´ÉÇÑ |
vacuously hold | Ç㹫Á¶°Ç¿¡ ÀÇÇÏ¿© ¼º¸³ |
validate | ÀÔÁõÇÏ´Ù |
validity | Ÿ´ç¼º |
variable assignment | º¯¼ö¹èÁ¤ |
when and only when | ¶§¸éÀÌ |
|