¼ö¸®³í¸®ÇÐ ¿ë¾î»çÀü [µ¹¾Æ°¡±â]
ÇÑ±Û ¿µ¾î
°¡¼³ hypothesis
°¡ÁöÄ¡±â branching
°³Ã¼º¯¼ö individual variable
°ÇÀü¼º soundness
°á·Ð conclusion
°áÇÕÀÚ connective
°öÀÎÀÚ conjunct
°ø¿ª codomain
±¸¹®, ±¸¹®·Ð syntax, syntactics
(1°è)±¸Á¶Ã¼ (1st-order) structure
±Í³³ induction
±Í·ù¹ý reduction to absurdity, RAA
±ØÇÑ´Ü°è ¼­¼ö limit ordinal
³í¸®°ö conjunction
³í¸®°ö¹® conjunction (formula)
³í¸®½Ä formula
³í¸®¿ÜÀû ±âÈ£ extralogical symbol
³í¸®Àû ±Í°á°ü°èlogical consequence relation
³í¸®Àû ±âÈ£ logical symbol
³í¸®ÇÕ disjunction
³í¸®ÇÕ¹® disjunction (formula)
´ÙÀ½´Ü°è ¼­¼ö successor ordinal
´ÙÀ½¼ö ÇÔ¼ö successor function
´ë»ó¿µ¿ª domain, universe (of discourse)
´ë¿ì contrapositive
´ëü replacement
´ëĪÀûÀÎ symmetric
µ¥¸®º£ÀÌ¼Ç derivation
µ¿µî°ü°è equivalence (relation)
µ¿µîÇÑ equivalent
µîÈ£ equality
¶§¸éÀÌ when and only when
¸®ÅÍ·² literal
¸¸Á·½ÃŰ´Ù satisfy
¸¸Á·°¡´ÉÇÑ satisfiable
¸¸Á·ºÒ°¡´ÉÇÑ unsatisfiable
¸èµîÀûÀÎ idempotent
¸èÁýÇÕ power set
¸íÁ¦ proposition, statement
¸íÁ¦¹®ÀÚ propositional letter
¸ðµ¨ model
¸ð¼ø contradiction
¸ð¼øÀûÀÎ inconsistent
¹«¸ð¼øÀûÀÎ consistent
¹­Àκ¯¼ö bound variable
¹®ÀÚ¿­ string
¹Ý´ëĪÀûÀÎ antisymmetric
¹Ý»çÀûÀÎ reflexive
¹èÁß·ü law of excluded middle, LEM
º¯¼ö¹èÁ¤ variable assignment
º¯¿ª range
º¸Á¶±âÈ£ auxiliary symbol
ºÎ¸ð parent
ºÎºÐ³í¸®½Ä subformula
ºÎºÐÁõ¸í subproof
ºÎºÐÁýÇÕ subset
ºÎÁ¤ negation
ºÎÁ¤¹® negation (formula)
ºñ´ëĪÀûÀÎ asymmetric
»ó¼ö±âÈ£ constant symbol
»ý¼º´Ü°è formation level
¼Ó¼º attribute
¼ú¾î predicate
¼ú¾î±âÈ£ predicate symbol
½×¾Æ³õ±â piling
¾Æ±Ô¸ÕÆ® argument
¾ÆÅè³í¸®½Ä atomic formula
¾ËÆÄºª alphabet
¾Ö¸®Æ¼ arity
¾ç¹æÇâÇÔÀÇ biimplication, biconditional
¾çÈ­»ç quantifier
¾ð¾î language
¿ª converse
¿¬°á»ç connective
¿¬»ê operation
¿¬¿ªÁ¤¸® deduction theorem
¿ÏÀü¼º completeness
¿ì¼±¼øÀ§ priority
¿ø¼Ò element
ÀǹÌ, Àǹ̷Рsemantics
Àǹ̰ª semantic value
À̸éÀÌ if and only if
ÀÔÁõÇÏ´Ù validate
ÀÚÀ¯º¯¼ö free variable
Àç±Í recursion
Àç±ÍÀûÀÎ recursive
Àü°Ç antecedent
ÀüÁ¦ premise
ÀüĪÇÑÁ¤±âÈ£ universal quantifier
Àüι® universal formula
Á¤±ÔÇü½Ä normal form
Á¤ÀÇ¿ª domain
Á¸ÀçÇÑÁ¤±âÈ£ existential quantifier
Á¸Àç¹® existential formula
ÁÖ¼® annotation
Áõ¸í proof
Áõ¸í°ü°è proof relation
Áõ¸í½Ã½ºÅÛ proof system
Áø¸®°ª truth value
Áø¸®°ª¹èÁ¤ truth value assignment
Áø¸®°ª ÇÔ¼ö truth function
Áø¸®Ç¥ truth table
Âü truth
Ãß·Ð inference
Ã߷бÔÄ¢ rule of inference
ÃßÀÌÀûÀÎ transtive
ġȯ substitution
Ÿ´ç¼º validity
ÅäÅç·ÎÁö tautology
ÅͶ߸®±â pop
ÇÑÁ¤±âÈ£ quantifier
ÇÑÁ¤»ç determiner
ÇÔ¼ö function
ÇÔ¼ö±âÈ£ function symbol
ÇÔÀÇ implication, entailment
ÇÔÀǹ® implication (formula)
ÇÕÀÎÀÚ disjunct
ÇÕ¼º³í¸®½Ä compound formula
Ç×Áø logically valid formula
Ç㹫Á¶°Ç¿¡ ÀÇÇÏ¿© ¼º¸³ vacuously hold
ÇØ¼® interpretation
Çü½ÄÁõ¸í formal proof
ÇüÁ¦ sibling
ÈÄ°Ç consequent
¿µ¾î ÇѱÛ
alphabet ¾ËÆÄºª, ±âÈ£ÁýÇÕ
annotation ÁÖ¼®
antecedent Àü°Ç
antisymmetric ¹Ý´ëĪÀûÀÎ
argument ¾Æ±Ô¸ÕÆ®, Àμö
arity ¾Ö¸®Æ¼
asymmetric ºñ´ëĪÀûÀÎ
attribute ¼Ó¼º
atomic formula ¾ÆÅè³í¸®½Ä
auxiliary symbol º¸Á¶±âÈ£
biconditional ¾ç¹æÇâÇÔÀÇ
biimplication ¾ç¹æÇâÇÔÀÇ
bound variable ¹­Àκ¯¼ö
branching °¡ÁöÄ¡±â
codomain °ø¿ª
completeness ¿ÏÀü¼º
compound formula ÇÕ¼º³í¸®½Ä
conclusion °á·Ð
conjunct °öÀÎÀÚ
conjunction ³í¸®°ö, ³í¸®°ö¹®
connective °áÇÕÀÚ, ¿¬°á»ç
consequent ÈİÇ
consistent ¹«¸ð¼øÀûÀÎ
constant symbol »ó¼ö±âÈ£
contradiction ¸ð¼ø
contrapositive ´ë¿ì
converse ¿ª
deduction theorem ¿¬¿ªÁ¤¸®
derivation µ¥¸®º£À̼Ç
determiner ÇÑÁ¤»ç
disjunct ÇÕÀÎÀÚ
disjunction ³í¸®ÇÕ, ³í¸®ÇÕ¹®
domain Á¤ÀÇ¿ª, ´ë»ó¿µ¿ª
element ¿ø¼Ò
entailment ÇÔÀÇ
equality µîÈ£
equivalence (relation) µ¿µî°ü°è
equivalent µ¿µîÇÑ
existential formula Á¸Àç¹®
existential quantifier Á¸ÀçÇÑÁ¤±âÈ£
extralogical symbol ³í¸®¿ÜÀû ±âÈ£
formal proof Çü½ÄÁõ¸í
formation level »ý¼º´Ü°è
formula ³í¸®½Ä
free variable ÀÚÀ¯º¯¼ö
function ÇÔ¼ö
function symbol ÇÔ¼ö±âÈ£
idempotent ¸èµîÀûÀÎ
if and only if À̸éÀÌ
implication ÇÔÀÇ, ÇÔÀǹ®
inconsistent ¸ð¼øÀûÀÎ
individual variable °³Ã¼º¯¼ö
induction ±Í³³
inference Ãß·Ð
interpretation ÇØ¼®
hypothesis °¡¼³
language ¾ð¾î
law of excluded middle ¹èÁß·ü
LEM ¹èÁß·ü
limit ordinal ±ØÇÑ´Ü°è ¼­¼ö
literal ¸®ÅÍ·²
logical consequence relation³í¸®Àû ±Í°á°ü°è
logical symbol ³í¸®Àû ±âÈ£
logically valid formula Ç×Áø
model ¸ðµ¨
negation ºÎÁ¤, ºÎÁ¤¹®
normal form Á¤±ÔÇü½Ä
operation ¿¬»ê
parent ºÎ¸ð
piling ½×¾Æ³õ±â
power set ¸èÁýÇÕ
predicate ¼ú¾î
predicate symbol ¼ú¾î±âÈ£
premise ÀüÁ¦
priority ¿ì¼±¼øÀ§
proof Áõ¸í
proof relation Áõ¸í°ü°è
proof system Áõ¸í½Ã½ºÅÛ
proposition ¸íÁ¦
propositional letter ¸íÁ¦¹®ÀÚ
pop ÅͶ߸®±â
quantifier ¾çÈ­»ç, ÇÑÁ¤±âÈ£
RAA (reductio ad absurdum)±Í·ù¹ý
range º¯¿ª
recursion Àç±Í
recursive Àç±ÍÀûÀÎ
reduction to absurdity ±Í·ù¹ý
reflexive ¹Ý»çÀûÀÎ
replacement ´ëü
rule of inference Ã߷бÔÄ¢
satisfy ¸¸Á·½ÃŰ´Ù
satisfiable ¸¸Á·°¡´ÉÇÑ
semantics ÀǹÌ, Àǹ̷Ð
semantic value Àǹ̰ª
sibling ÇüÁ¦
soundness °ÇÀü¼º
statement ¸íÁ¦
string ¹®ÀÚ¿­
(1st-order) structure (1°è)±¸Á¶Ã¼
successor function ´ÙÀ½¼ö ÇÔ¼ö
successor ordinal ´ÙÀ½´Ü°è ¼­¼ö
tautology ÅäÅç·ÎÁö
transtive ÃßÀÌÀûÀÎ
truth Âü
truth function Áø¸®°ª ÇÔ¼ö
truth table Áø¸®Ç¥
truth value Áø¸®°ª
truth value assignment Áø¸®°ª¹èÁ¤
subformula ºÎºÐ³í¸®½Ä
subproof ºÎºÐÁõ¸í
subset ºÎºÐÁýÇÕ
substitution ġȯ
symmetric ´ëĪÀûÀÎ
syntax, syntactics ±¸¹®, ±¸¹®·Ð
universal formula Àüι®
universal quantifier ÀüĪÇÑÁ¤±âÈ£
universe (of discourse)´ë»ó¿µ¿ª
unsatisfiable ¸¸Á·ºÒ°¡´ÉÇÑ
vacuously hold Ç㹫Á¶°Ç¿¡ ÀÇÇÏ¿© ¼º¸³
validate ÀÔÁõÇÏ´Ù
validity Ÿ´ç¼º
variable assignment º¯¼ö¹èÁ¤
when and only when ¶§¸éÀÌ

 Àǰ߰ú Áú¹®Àº ·Î º¸³» ÁֽʽÿÀ.  - 2011³â 3¿ù 23ÀÏ -